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; MEASUREMENT ERROR IN REGRESSION ANALYSIS

Amitava Mitra and Khursheed Alam

University of Southern California and Clemson University

ABSTRACT

Consider the linear regression model Y = X8 + ¢ where Y
denotes a vector of n observations on the dependent variable,
X is a known matrix, 8 is a vector of parameters to be estimated
and ¢ is a random vector of uncorrelated errors. If X'X is
nearly singular, that is if the smallest characteristic root of
X'X is small then a small perturbation inthe elements of X, such
as due to measurement errors, induces considerable variation in
the least squares estimate of 8. 1In this paper we examine for
the asymptotic case when n is large the effect of perturbation

with regard to the bias and mean squared error of the estimate.
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AMS Classification: 62J05

e

*The authors work was supported by the Office of Naval t

Research under Contract N00014-75-C-0451.

ki et




1. Introduction. Consider the linear regression model

(1.1) Y = X0 + ¢€

where Y is a nxl vector of observations, X is a fixed nxp matrix
of rank p, 8 is a pxl vector of unknown parameters to be estimated
and ¢ is a nxl vector of random errors. Let the components of ¢
be uncorrelated and identically distributed with mean zero and

variance 02, say. Let Al""’kp denote the characteristic roots

of X'X, where prime denotes the transpose of a matrix. The least
squares estimate of 9 and the sum of mean squared errors (SMSE) of

the components of 6 are given by

(1.2) 6 = (X'x) " x'y
(1.3) SMSE g = E(8-68)"' (8-8)
2 P -1
=g° } Ay T

i=1

Clearly, 6 is an unbiased estimator of 6. From (1.3) it is

seen that if X'X is nearly singular, that is if one or more of

~
the values of xi is small then ¢ is unstable in the sense that

the variance of some of the components of 8 is large. A small

L ik W & s %

value of A may arise from certain interrelationship between the

independent variables of the linear model. The relation is

called multicollinearity in econometrics, }
Sdhniﬂ

Suppose that the elements of X are subjected to small random ,;u o ’
(»

perturbations, such as due to measurement errors. From (l1.2) it

is clear that the least square estimator 5 is no more unbiased

peee—_——_
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for 6. Beaton, Rubin and Barone (1976) considered a set of

data proposed by Ldnéley (1967) for regression analysis to

find the effect of perturbation. They introduced perturbation as
round-off errors in the numerical values of the elements of X.

From an extensive empirical study they found that the regression
analysis could be very sensitive to small perturbations. The
authors have concluded from their study that "the computer program
is often not the most important factor in computing regression
analysis, and that the best thing a program can do for some problems
is to refuse to complete the calculations". The conclusion seems
to be naive (see Dent and Cavendar (1977) and Espasa (1977) for
comments on the authors' paper). The problem arises from the choice
of the estimator, namely, the least squares estimator which is
unstable when the desién matrix X'X is nearly singuldr. The
difficulty can be overcome by choosing some other estimator, such

as, the "ridge" estimator, given by § = (x'X+KI).1

X'Y, where K
is a positive number. But then § is not unbiased.

In this paper we examine the behavior of the least squares
estimator when n is large and X is subjected to a random pertur-
bation. Formulas are given for the asymptotic bias and variance.

The relation between the bias and the eigen values of X'X is shown

through a canonical representation of the parameter 6. It is seen !

that the smaller the eigen value, the larger is the associated bias. y

The given formulas are checked with an empirical result obtained
by the Monte Carlo method.

In a recent paper, Stewart (1977) has given an upper bound on
the deviation of the least squares estimator due to a given per-
turbation in X. But Stewart's method is not applicable to the

derivation of the results given in this paper.
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2. Main results. Let F denote the perturbation matrix. That

is, X+F represents the perturbed matrix of the independent
variables of the linear model (l1.1). Suppose that the elements

of F are uncorrelated random variables, distributed independent

of ¢ with mean zero and common variance v, say. The least squares

estimator of 8 for the perturbed data set is given by

(2.1) 0% = ((X+F)' (X+F)) L (X+F) 'Y
Therefore
(2.2) E8* =E((X+F) ' (X+F)) L (X+F) 'Xo

= 8 =E((X+F) ' (X+F)) ~L(x+F) 'Fo

where the expectation in the second line on the right side of
(2.2) is with respect éo the distribution of the perturbation
errors. Formula (2.2) gives the bias of 6*.
Let the rows of the matrix X be extended such that the elements of X
are uniformly bounded and the characteristic roots of X'X are given by
Ai =nv,; + 0(n xi), where vl,....vp are a fixed set of positive

numbers, Let o = P8 anda* = P6*, where P is an orthogonal matrix

diagonalizing X'X. Multiplying both sides of (2.2) by P and equat-

ing the ith component of the resulting vector of each side we have j

after simplification

(2.3) E a; aa, - (=

=%
i ey + 0(n ))ai.

. *
Similarly, the variance and mean squared error of a, are given by

[ ]

Q (1 + 0(n" %))

*
(2.4) nvara, =

vi+v




2.2
* 2 c2 -5 nviay -y
(2.5) n E(ai-ai) = 5T v (L + 0(n °)) + —_— (1 + 0(n 9)).
: i (vi+v)
Therefore
(2.6) n SMSE 8* = n E(0*-0)'(6*%~8)
= n E(a*-q) ' (a*~a)
2.2
P o2 P nv-ay -
=0 = 1(L+0(n™%).
i=1 i i=1 (vi+v)
If v = 0, that is, if there is no perturbation then E af = Q..

i i
*
From (2.3) it is seen that the relative bias of @y is small if v is

small compared to Vs as it should be expected. On the other hand,
*®
if vy is small compared to vV then the relative bias of ai is nearly

equal to -1.

: * 02 02
From (2.4) it is seen that for Vv = 0 we have var ai =t
i i

which agrees with the result given in (1.3). To see the relation
*
between the effect of perturbation on the variance of ay and

the associated eigen value of X'X,we write (2.4) as follows:

* gV =%
(2.7) n v var a; vi+v + 0(n *).

From (2.7) it is seen that the perturbation of X has a stabilizing
influence on the least square estimate. But the reduction in the
variance should be reckoned with the induced bias.

To verify the asymptotic formulas given above, we have carried ' 1

out the regression analysis under perturbation with a 16x6 matrix X,
obtained from the data proposed by Longley (1967). However, the
matrix was modified for certain changes in scale and origin. The ‘ u

characteristic roots of the modified matrix are given by Ai = 1svi,

where




2

= .2188(10)"" 1

P v, = .3705(10) ", vy = .2005(10)

1
Vi

= .1118(10)° = .1282(10)° , v

4
\ . Vg 6" .3596(190) .

From the given values of vy we generate as follows an nxp matrix

Z for large n such that the characteristic roots of 2'Z are approxi-

1
mately given by xi = nv; + 0(n%): Generate a p-component
vector U whose components are identically and independently dis-

tributed as N(0,1). Compute

T=P' /DU
where P is the orthogonal matrix diagonalizing X'X and D denotes
the diagonal matrix with diagonal elements equal to vy
i=1,...,6. Generate n independent values of T and set them
equal to the columns of 2°'.

For each Z we genérate the error vector ¢ whose components
are indepeﬁdently and identically distributed as N(0,l1), that is,
6 = 1. Then we compute Y from the formula Y = 20 + ¢, where the
components of § are given by

b, = .0151, 9

= -,3582, 6, = -.2020

2 3

By = -.1033, 0g = -.5110, 66 = ,1829.

The value of 6 given above is the least square estimate of §
computed from the data given by Longley. For the discussion of
this paper any other value of 6 could have been assumed as well.
The matrix Z is perturbed by adding to each element of 2
independent values of a random variable £, distributed uniformly

on (—i. %), giving v = %5.

The results of the regression analysis are shown in Table I

below. The figures given in the table for the asymptotic bias and

mean squared error of the least squares estimate are obtained from

|




the formulas (2.3) and (2.5). The figures for the empirical

values given in the table are each based on 500 simulations.

They were found to be fairly accurate, by checking duplicate
values. It is seen from the table that there is fair agreement

between the theoretical and empirical figures.

t
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Table I - Asymptotic (Asym) and Empirical (Emp) values of

* * 1
E a; = oy and nMSE(ai) for v = iz and n = 500.

L *
Asym Emp Asym Emp &
i=1l |-.3713 -.3914 80.6393 76.7583
2 .3028 .4482 54.1350 50.6663
3 .0027 © .0596 .4825 1.9906
4 .0004 .0353 .0889 .7266
5 |-.0001 -.0253 .0078 .3884
6 - -.0025 .0003 .0047

- Denotes insignificant figure
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